Refine Your Search

Topic

Author

Search Results

Technical Paper

Latest Advances in Aluminum Shape Casting

2017-03-28
2017-01-1665
With the increasing use of aluminum shape castings in structural applications in automobiles, assurance of cast product integrity and performance has become critical in both design and manufacturing. In this paper, the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized. Examples of newly developed technologies for alloy design, melting and melt treatment, casting and heat treatment processes in aluminum casting are reviewed. Robust design and development of high integrity aluminum castings through an Integrated Computational Materials Engineering (ICME) approach is also discussed.
Journal Article

Retained Austenite Stability and Impact Performance of Advanced High Strength Steel at Reduced Temperatures

2017-03-28
2017-01-1707
Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
Journal Article

On Designing Software Architectures for Next-Generation Multi-Core ECUs

2015-04-14
2015-01-0177
Multi-core systems are promising a cost-effective solution for (1) advanced vehicle features requiring dramatically more software and hence an order of magnitude more processing power, (2) redundancy and mixed-IP, mixed-ASIL isolation required for ISO 26262 functional safety, and (3) integration of previously separate ECUs and evolving embedded software business models requiring separation of different software parts. In this context, designing, optimizing and verifying the mapping and scheduling of software functions onto multiple processing cores becomes key. This paper describes several multi-core task design and scheduling design options, including function-to-task mapping, task-to-core allocation (both static and dynamic), and associated scheduling policies such as rate-monotonic, criticality-aware priority assignment, period transformation, hierarchical partition scheduling, and dynamic global scheduling.
Journal Article

Characterization of Caliper Piston Material Stiffness and Damping

2013-09-30
2013-01-2050
The brake caliper piston plays a key role in caliper function, taking significant responsibility for qualities such as fluid consumption, insulation of the brake fluid from heat, seal rollback function, and brake torque variation sensitivity to disc thickness variation. It operates in a strenuous environment, being routinely subjected to high stresses and elevated temperatures. Given all of the demands on this safety-critical component (strength, stiffness, wear resistance, stable friction against rubber, thermal stability, machinability, manageable thermal conductivity, and more), there are actually relatively few engineering materials suitable for use as a caliper piston, and designs tend to be limited to steel, aluminum, and engineered plastics (phenolic composites). The lattermost - phenolic composites - has been of especial interest recently due to mass savings and possible reduction in brake corner judder sensitivity to disc thickness variation.
Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2011-09-11
2011-24-0080
The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

High Voltage Hybrid Battery Tray Design Optimization

2011-04-12
2011-01-0671
Hybrid high voltage battery pack is not only heavy mass but also large in dimension. It interacts with the vehicle through the battery tray. Thus the battery tray is a critical element of the battery pack that interfaces between the battery and the vehicle, including the performances of safety/crash, NVH (modal), and durability. The tray is the largest and strongest structure in the battery pack holding the battery sections and other components including the battery disconnect unit (BDU) and other units that are not negligible in mass. This paper describes the mass optimization work done on one of the hybrid batteries using CAE simulation. This was a multidisciplinary optimization project, in which modal performance and fatigue damage were accessed through CAE analysis at both the battery pack level, and at the vehicle level.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Effect of Different Magnesium Powertrain Alloys on the High Pressure Die Casting Characteristics of an Automatic Transmission Case

2010-04-12
2010-01-0409
The main objective of this paper is to demonstrate how flow and solidification simulation were used in the development of a new gating system design for three different magnesium alloys; and to determine the relative castability of each alloy based on casting trials. Prototype tooling for an existing 3-slide rear wheel drive automatic transmission case designed for aluminum A380 was provided by General Motors. Flow and solidification simulation were performed using Magmasoft on the existing runner system design using A380 (baseline), AE44, MRI153M and MRI230D. Based on the filling results, new designs were developed at Meridian for the magnesium alloys. Subsequent modeling was performed to verify the new design and the changes were incorporated into the prototype tool. Casting trials were conducted with the three magnesium alloys and the relative castability was evaluated.
X